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The application of UV–Vis spectrophotometry as an alternative or complementary approach to the clas-
sification of tobacco products is presented in this work for the first time. Two hundred fifty samples from
five different cigarette brands composed of single and mixed tobacco blends were examined for that
purpose on the basis of the UV–Vis spectrum of their aqueous extracts. Data transformation based on the
normalization of absorbance intensities as a function of sample weight was employed in order to account
for differences in the relative intensities of each sample. Principal components analysis (PCA) was used to
hemometrics
lassification and regression trees
iscriminant analysis
rincipal components analysis
obacco
V–Vis spectrophotometry

extract outlier cases and sample classification was then pursued with the aid of discriminant analysis (DA)
suggesting that a reduced number of variables (thirteen out of seven hundred initially available) could
provide perfect classification (100% correct assignations) of samples containing single tobacco species or
different blends and a fair classification of samples with similar composition (80% correct assignations)
yielding an overall 95.7% correct classification. To this pursue, classification and regression trees were
found to afford perfect classification of all samples using only a few logic rules based on appropriate split

of in
conditions at the expense

. Introduction

Although tobacco is represented by 67 species belonging to the
icotiana genus of the nightshade family (Solanaceae), it is mainly

epresented by five species (Virginia, Oriental, Burley, Maryland
nd Rustica) which predominate the world production due to their
ide use in tobacco industry [1]. Each of these species has differ-

nt chemical composition (i.e. oil, sugar, nicotine content, etc.) and
hey are used either separately or most often in various blends in
ommercial tobacco products.

The large revenue generated by the worldwide tobacco com-
erce has led to the emerge of counterfeit and shoddy products
ith potentially increased hazards due to the uncontrolled pro-
uction process (e.g. unregulated pesticide use) or treatment (e.g.
nverified use of additives). As a consequence, there is a continu-
us demand to arbitrate the authenticity and control the quality of
obacco delivered to the market. Furthermore, beyond quality con-
erns, characterization of tobacco products may be an important

orm of trace evidence in forensic science since it can provide cor-
oborative evidence regarding the presence of a person at the place
f an event. Therefore, the characterization of tobacco products is
multifarious issue that merit investigation.

Empirically, the quality or the type of tobacco can be mon-
tored by human sensory responses on the basis of subjective

∗ Corresponding author. Tel.: +30 26510 08400; fax: +30 2651008781.
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serting 15 variables in the model.
© 2010 Elsevier B.V. All rights reserved.

criteria like aroma, flavour or color. However, these criteria can-
not be used objectively to support the authenticity of a product
or discriminate it from other related products. For this reason,
several efforts have been devoted to the provision of scientifi-
cally sound criteria that can provide an objective discrimination
and characterization of tobacco products. Instrumental techniques
have inevitably been brought into this effort. Methods based on
gas and liquid chromatography, usually combined with mass spec-
trometric (MS) detection for the identification of major organic
constituents [2–4] and inductively coupled plasma spectrometry
for the determination of a multitude of inorganic elements [5,6],
have been successfully employed to obtain a more accurate assess-
ment of tobacco samples. However, tobacco contains over 3000
organic compounds and a large number of trace elements which
are practically impossible to determine [5–7]. Moreover, the mix-
ture of different tobacco species, the variety of grades and the
relative use of additives in commercial products render straightfor-
ward comparisons an intricate task [3,7]. Therefore, less rigorous
and cumbersome procedures are required which are able to pro-
vide a rapid, yet accurate, screening of tobacco products within a
reasonable analysis time and experimental effort.

Up to date, many studies have demonstrated the usefulness of

NIR spectroscopy to carry out a qualitative and quantitative analysis
of tobacco samples in combination with various chemometric tech-
niques that aid to relate sample properties to the observed spectra
[8–10]. Depending on the available samples and the intended appli-
cation a satisfactory discrimination of various tobacco samples has

dx.doi.org/10.1016/j.jhazmat.2010.08.126
http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:dgiokas@cc.uoi.gr
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een reported [8–12], especially with regards to the identification
f cultivation areas [8,10], tobacco varieties [13] or different com-
ercial tobacco brands [9,14,15].
However, despite the progress made in instrumentation, the

urchase of NIR spectrometer remains expensive, especially when
ompared to other spectroscopic detectors. Furthermore, a major
isadvantage of NIR spectrometry is the dependence on time con-
uming and laborious calibration procedures and the complexity
n the choice of data treatment [16,17]. Although this problem
ould be amortized by transferring the calibrations from the mas-
er instrument to several slaves, no specific methodology has yet
ained widespread acceptance due to optical differences between
he instruments [17]. As a result different calibration procedures
re required depending on the available training data set and the
ntended application [8–15]. Although these procedures are effi-
ient, they significantly increase the computational effort and in
everal occasions require too sophisticated statistical techniques
hich are not always available in commercial statistical software.

urthermore, NIR spectroscopy has generally weak sensitivity to
inor constituents [16], as compared to other spectrometric detec-

ors, therefore minor changes in sample composition can hardly be
etected, which limits its applicability in exclusionary hierarchy of
ample authenticity and especially in forensic investigations were
ample availability may be limited.

Beyond NIR, the exploitation of other techniques like UV–Vis
pectrophotometry in tobacco classification could offer an efficient
nd cost-effective alternative. Nevertheless, its analytical applica-
ion towards this direction has been overlooked despite the fact that
nformation retrieved from UV–Vis spectra have been successfully
pplied in many occasions. Using classification techniques which
re readily accessible in most statistical packages and minimum
ample pre-treatment, UV/Vis spectra interpretation has been suc-
essfully employed in a large array of discrimination assays e.g. for
he discrimination of soils [18], blue ball-point pen inks [19], wines
20], pharmaceutical active compounds [21], etc. Surpisingly, its
se in tobacco classification and authenticity has not received any
ttention despite the fact that color is an important property of
lmost all tobacco products.

With the above in mind, the aim of this study is two-fold. The
rst is to examine the analytical utility of UV–Vis spectrometry,

n combination with appropriate chemometric techniques, as an
lternative and cost-effective tool for the classification and discrim-
nation of different tobacco samples. The second is to evaluate the
ossibility of discriminating among samples with similar compo-
ition within the same experimental and computational approach.
or this reason, five commercially available cigarette brands con-
aining various tobacco mixtures were selected and the UV–Vis
bsorbance spectra of their aqueous extracts were recorded. These
pectra were then used to construct a model, based on principal
omponent analysis (PCA) and linear discriminant analysis (LDA)
hat could characterize and classify each brand. The results sug-
ested that LDA of the UV–Vis spectra could be a valuable tool in
obacco discrimination affording a very good classification of prod-
cts of a single tobacco type and a fair approximation of products
ith similar blends. In the latter case, classification trees offer an

fficient tool for the discrimination of samples with similar com-
osition using two more variables than DA.

. Materials and methods
.1. Sample preparation and measurements

Five commercially available cigarette brands belonging to the
ame commercial category (formerly known as “lights”) were used
n the study. To avoid reference to the cigarette brand based on the
us Materials 185 (2011) 86–92 87

initial letter they were randomly coded as: B, C, G, J and W. Brands
B and J were selected as representatives of products using a sin-
gle tobacco species while brands C, W and G as representatives of
products composed of tobacco blends of similar composition (from
a qualitative perspective since no detailed data were available).
Brand J uses a tobacco species which is also used in C, W and G
(at unknown proportion) while brand G uses a similar blend as
C and W, the latter two being imported from the same manufac-
turer. For each brand, 5 packets were purchased and 10 cigarettes
from the same batch were sampled from each packet. Samples
were homogenized and approx. 0.1 g of tobacco was extracted with
500 mL distilled water in triplicate. The extract was centrifuged
at 45,000 rpm for 15 min. The resulting supernatant liquid was
carefully sampled with a Pasteur pipette, diluted 3 times, and its
absorbance was measured on a JENWAY 6405 UV–Vis spectropho-
tometer in 1.00 cm quartz cell against distilled water as the blank.
The scanning range was 200–900 nm at 1 nm intervals resulting in
700 experimental variables (absorbance values) for each sample.
This procedure was run in triplicate for each tobacco sample and
the results were averaged.

2.2. Validation data

Two sets of data were used to validate the results. In the first,
a few packages from the initial batch that was used for calibration
were left intact and opened 3 months later, in order to minimize
the effect of air, moisture and possibly temperature that could alter
their composition during storage. The second dataset comprised of
samples purchased 3 months later from local stores.

3. Results and discussion

The extraction of tobacco products can be made with the aid
of various water-miscible or water-immiscible organic solvents as
well as water [22]. The extraction medium and the procedure used
to retrieve tobacco components strongly influence the quality of the
measurements. In this work, the water soluble fraction of cigarette
tobacco was assessed mainly due to the simplicity of the extraction
but also due to the fact that several tobacco products are available
in moisted form (smokeless tobacco), therefore their hydrophilic
extracts better reflect the tobacco components inserted into the
human organism via smokeless application.

3.1. Data treatment

The raw absorbance values for each sample (A) were divided by
weight so that they represented absorbance per g of tobacco (Ag).
The use of Ag values instead of raw absorbance was necessary in
order to overcome the problem of differences in the weights of the
samples used to prepare the solutions and normalize the spectra
per unit mass so that they could become comparable.

As most of the examinations performed in this work were
parametric statistical techniques, it was necessary for the data
(absorbance per unit mass) to be normally distributed. For this rea-
son the log10(Ag) values were calculated to ensure normality of the
data [18,19,23,24]. Therefore, from now on, the log10(Ag) values
will be referred to as the original variables.

3.2. Variable selection

The average spectrum for each cigarette brand (as Ag vs. �)

is depicted in Fig. 1. From a macroscopic point of view, compar-
ison of the average normalized spectra showed that differences
in the absorption profile of each sample were evident only in the
range between 225 and 350 nm (Fig. 1 inset), while no visual dif-
ferences could be inferred at longer wavelengths. In our effort to
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the observed variance. Finally the efficiency of PCA was re-assessed
using the Barlett’s sphericity test on the correlation matrix return-
ing a �2 = 1888.8 which is statistically significant at p = 0.05 and 120
degrees of freedom indicating that the variables are not orthogonal
ig. 1. Average absorbance spectra normalized per sample mass (Ag) vs. wavelength
�) for all samples. Inset graph: Magnified view of Ag vs. � in the UV region.

etrieve maximum information from the absorbance spectra, the
st derivative of all samples was calculated but it did not reveal
ny pattern that could be employed to differentiate among the sam-
les. Furthermore, since these samples were composed of a mixture
f various blends, comparison of the average spectra could not be
onsidered as a safe procedure for tobacco discrimination. That is
ecause these spectra represent only the between sample variance
ith nothing been known about the within sample variance. There-

ore, it was decided to select spectra from the entire UV–Vis region
ather than isolating specific wavelength maxima that could import
ias in the analysis.

Working with the entire dataset is impractical since the spec-
ra were recorded in the range of 200–900 nm at 1 nm intervals

eaning that 700 variables were recorded for each individual sam-
le. To afford data reduction and decide which variables should be
etained, K-means cluster analysis on the variables over the objects
tobacco samples) was performed. This feature reduction technique
orms clusters with variables carrying similar information about
he objects and the most representative variables can be chosen
ased on their proximity to the cluster centroids. However, as the
umber of selected clusters increases the variables become highly
orrelated which results in singular correlation matrices. In addi-
ion to this limitation, one has to use as few variables as possible
hen running classification tests with discriminant analysis (DA)

n order to avoid capitalizing on change. A useful rule of thumb
ictates that m variables should be used when n objects exists so
hat the criterion: n/m > 3, is satisfied. [18,25]. To compromise both
imitations, 15 clusters were calculated in order to use the rele-
ant variables with the closest proximity to group centroids, i.e.
he absorbance of the solutions at 207, 220, 254, 321, 360, 398,
16, 441, 467, 496, 531, 566, 616, 691 and 776 nm.

.3. Principal component analysis and data interpretation

Before proceeding with sample classification, it was necessary to
emove outliers from the data. That is because they can negatively
ffect the results of DA through an overestimation of the within
ample variance, which results in retaining the null hypothesis of
o difference between group means. In multivariate systems, PCA

an aid the observation of outliers by projecting the data in a two-
imensional plane after Varimax rotation of the first two extracted
omponents [19]. The plane shown in Fig. 2 suggests that samples
1 and J5 exhibited noticeable deviation from their relative groups
nd should be considered as outliers.
Fig. 2. Principle component graph for the detection of outlier cases (©) B, (�) C, (♦)
G, (�) J, (�) W.

After removal of the outliers from the dataset, PCA was applied
again to investigate if there is any pattern in the data that can be
used to extract information from the recorded spectra. The scree
plot for the given dataset (graph not shown) showed that only the
first two components complied both with the Kaiser criterion and
satisfied the scree test, accounting for 92.3% of the total variance.
Based on these data, the unrotated loadings of the experimental
variables for the first two PC’s were extracted. However, the unro-
tated factor loadings did not reveal any clear pattern among the
variables. On the other hand, when these loadings were plotted
again after Varimax rotation (Fig. 3) a good discrimination among
the variables was obtained which can be assigned to the Vis region
for the first principal component (PC1) and to the UV region for
the second principle component (PC2). The Varimax rotated factor
loadings and the coefficients of the extracted components gathered
in Table 1 show that the contributions of the variables in the compo-
nents are in agreement with the factor loadings. Interestingly, the
contribution of the variables of the second principle component
(UV spectra) are higher than those of the first principle compo-
nent (Vis spectra) suggesting that the PC2 contributes more to the
explanation of the observed variance. Furthermore, the log10 trans-
formed normalized absorbance values at 398 and 416 nm exhibited
factor loadings below 0.8, so they were not further considered since
they do not seem to contribute significantly to the explanation of
Fig. 3. Varimax rotated factor loading graph for the selected variables.
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Table 1
Factor loadings and coefficients of the extracted components after Varimax rotation.

Variable PC1 PC2

Loadings Coefficients Loadings Coefficients

NM207 −0.0376 −0.0441 0.9634 0.1859
NM220 0.0829 −0.0291 0.9795 0.1840
NM254 0.1191 −0.0244 0.9799 0.1826
NM321 −0.1102 −0.0516 0.9139 0.1794
NM360 0.2021 −0.0122 0.9465 0.1729
NM398 0.6533 0.0570 0.6935 0.1061
NM416 0.7875 0.0795 0.5705 0.0771
NM441 0.8953 0.1013 0.3801 0.0363
NM467 0.9427 0.1144 0.2097 0.0017
NM496 0.9678 0.1208 0.1349 −0.0136
NM531 0.9873 0.1273 0.0369 −0.0331
NM566 0.9853 0.1295 −0.0237 −0.0447
NM616 0.9668 0.1265 −0.0090 −0.0411
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Table 3
Canonical root coefficients.

Coefficient Root 1 Root 2 Root 3 root 4

b207 71.46 26.29 3.85 83.19
b220 −10.51 −158.47 21.66 −114.99
b254 −87.31 44.79 −36.79 37.00
b321 27.34 84.16 −35.24 14.12
b360 14.04 −13.88 63.23 −27.08
b441 25.32 −59.71 −72.38 −17.36
b467 −34.76 96.97 72.23 −17.90
b496 11.35 13.18 13.49 38.66
b531 −29.40 −45.82 −44.33 14.11
b566 15.51 12.07 −3.47 −9.31
b616 −7.00 −4.27 12.13 −12.02
b691 13.53 9.06 11.20 17.83
b776 −5.15 −6.91 −9.86 −8.51
NM691 0.9321 0.1233 −0.0416 −0.0459
NM776 0.8442 0.1121 −0.0493 −0.0438

alues in italics denote important factor loadings (>0.8).

ut correlated therefore allowing to reduce the dimensionality of
he original data.

.4. Discriminant analysis and sample classification

In order to select the variables that can better classify samples
ased on their UV–Vis spectrum profile a standard discriminant
odel was employed. Although forward or backward DA modes

ould be used to provide additional data reduction the final out-
ome was not deemed satisfactory so they were not further
onsidered. Besides the 13 variables inserted into the standard DA
ode are a significant simplification to the variables present in the

riginal dataset (approx. 700). The overall discriminatory power
f the model, calculated by means of the Wilk’s � (defined as the
atio of the determinant of the within-groups variance – covari-
nce matrix to the determinant of the total variance – covariance
atrix) was 0.0285 (F52,118 = 3.4252) and was found to be statisti-

ally significant at the p = 0.05 level with a high average variable
edundancy of 96.8% which can be attributed to the predictable
attern of the absorbance spectrum (Table 2).

The four discriminant functions (canonical roots) calculated for
he model (Table 3) show that the first three functions account for
lmost 96.5% of the total variance. The post hoc classification of the
raining data set (Fig. 4a) showed that discriminant function root
1) was responsible for the separation of B–C–W from G–J, whereas
iscriminant function root (2) further aided the separation of B from

–W. Root (3) could be used for improving the separation between
and W as well as between G and J (Fig. 4b). The use of root 4

Fig. 4c) did not provide any information with regard to sample dis-
rimination. More details can be obtained from the classification

able 2
tandard discriminant analysis of the selected variables.

Variable Partial � Tolerance Redundancy (%)

NM207 0.8209 0.0145 98.6
NM220 0.6744 0.0105 98.9
NM254 0.8555 0.011 98.9
NM321 0.5148 0.0465 95.4
NM360 0.7361 0.0545 94.6
NM441 0.8767 0.0115 98.9
NM467 0.8089 0.0112 98.8
NM496 0.9707 0.0173 98.3
NM531 0.7838 0.0209 97.9
NM566 0.9701 0.0194 98.1
NM616 0.9635 0.0398 96.0
NM691 0.8593 0.0513 94.9
NM776 0.7917 0.1193 88.1
b0 −32.57 50.25 −3.41 −7.50
Eigenvalue 4.998 1.480 0.860 0.267
% Cummulative variance 0.657 0.852 0.965 1.000

matrix (Table 4). The diagonal of the matrix contains the correct
classifications. An overall 95.7% correct classification was achieved
with brands B, C, G and J being the most successful in their clas-
sification (100%). For brand W, two samples were misclassified as
belonging to brand C. The determination of squared mahalanobis
distances from group centroids showed that samples W2 and W7
were misclassified as belonging to group C although the absolute
difference of the distances from group centroids was less than one
suggesting that misclassification is marginally within the experi-
mental error. Unfortunately, the exact qualitative or quantitative
composition of each sample was not known in order to shed more
light on the origin of these differences. Nevertheless, it was known
that brands G, C and W use a blend composed of the same tobacco
species, while C and W are produced from the same manufacturer
and imported from the same country which justifies the observed
overlap in their classification. On the other hand, brands B and J
contain a single tobacco species (and different from each other).

The DA was completed with the calculation of the so-called
classification functions. These functions allow the post hoc clas-
sification of the items in the training data set or the classification of
new items by calculating the relevant components scores and then
entering the results into the classification functions. The function
yielding the highest result would indicate the group which best
fits the new sample. In this work, five classification functions were
calculated (one for each group) and were of the form:

f (Gi) = b0 +
∑n

i=1
biPCi

where i is the number of groups, b0 is the constant inherent to
each group, n is the number of parameters used to classify a set of
data into a given group, bi is the weight coefficient assigned by DA

to a given selected parameter (PCi). The calculated coefficients are
given in Table 5 and the post hoc classification of the training data
set by means of these functions was found to be 95.7% as previously
discussed.

Table 4
Classification matrix.

Predicted classification

B C G J W % Correct

Observed classification B 9 100
C 10 100
G 10 100
J 8 100
W 2 8 80

Total 9 12 10 8 8 95.7
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Table 5
Classification functions.

Coefficient B C G J W

b207 2402.1 2227.6 2096.7 1951.7 2350.0
b220 10619.5 11134.7 11011.0 11045.8 11157.2
b254 −9108.4 −9186.5 −8854.0 −8824.5 −9333.0
b321 −4105.2 −4326.8 −4403.2 −4425.0 −4410.7
b360 1515.2 1504.2 1446.6 1553.4 1641.2
b441 712.2 955.7 810.1 631.4 830.8
b467 −2165.3 −2480.5 −2341.9 −2074.8 −2409.7
b496 −541.2 −627.4 −609.6 −634.4 −563.3
b531 545.4 720.4 812.4 710.7 630.4
b566 29.8 0.3 −63.3 −62.1 −7.5
b616 −525.5 −513.4 −500.6 −463.2 −500.0

The results from the validation study are shown in Table 7. As we
can observe, samples belonging to the same batch as the calibration
samples were classified very effectively although some deviations
were observed which can be attributed to instrumental and exper-

Fig. 5. Classification tree developed using all variables. Values in the upper left cor-
ner stand for the node number, letters in the up right corner represent the sample
code and values in the lower left corner the number of samples classified to each
node. Straight line boxes are interim nodes and dot line boxes terminal nodes. Linear
combination split conditions: F1(0) = 0.32 + 0.64A207 − 0.56A220 − 1.78A254 + 1.56A321

+ 0.14A360 − 22.85A398 + 61.12A416 − 23.19A441 − 30.73A467 + 16.52A496 − 54.92A531 +
52.66A566 − 17.68A616 + 30.86Ab691 − 23.42A776; F2(0) = −0.75 + 0.54A207 − 4.42A220

− 2.01A254 + 7.05A321 − 12.30A360 + 37.22A398 + 3.35A416 − 47.07A441 + 150.65A467
ig. 4. Canonical score graph of the discriminant functions for the post hoc classifi-
ation of the data. (©) B, (�) C, (♦) G, (�) J, (�) W.

.5. Classification trees

The resolution among these samples was then pursued with
he aid of classification trees. Since classification and regression
rees (C&RT) is a nonparametric technique, it does not make any
ssumptions on the data and they can be used straightforwardly

o extract information form the raw data (Ag in this work). To
void excessively tress and the formation of many nodes that could
ignificantly complicate the interpretation various methods and
topping rules were examined. The best results, that provided a
ood compromise between classification capacity and the com-
b691 237.7 180.9 163.6 154.3 227.0
b776 163.3 201.7 203.4 196.7 172.0
b0 −2674.1 −2788.5 −2683.3 −2600.6 −2854.8

plexity of the tree, were obtained when all 15 variables determined
by K-means cluster analysis on the variables over the objects were
deployed in discriminant linear combination splits for ordered vari-
ables with prune on deviance as the stopping rule. The graph of
Fig. 5 shows that classification is accomplished at 5 terminal and 3
interim nodes. The tree structure of Table 6 gathers sample classifi-
cation for each node. As we can observe all samples were perfectly
classified suggesting that C&RT can be a powerful tool to the classi-
fication of tobacco samples based on the UV–Vis spectrum of their
hydrophilic components.

3.6. Cross validation
− 21.28A496 + 0.94A531 − 208.72A566 + 134.13A616 − 52.73A691 − 53.84A776; F3(0)
= −0.14 − 3.41A207 + 7.71A220 − 3.31A254 − 11.62A321 + 17.29A360 − 46.25A398 −
0.16A416 + 124.61A441 −122.36A467 −55.08A496 + 27.19A531 + 54.89A566 −110.71A616

− 170.03 A691 + 86.75A776; F4(0) = 1.55 + 1.78A207 − 0.39A220 − 4.69A254 + 5.12A321

− 8.65A360 − 33.88A398 + 218.35A416 − 357.04A441 + 193.31A467 + 27.29A496 −
225.25A531 + 59.97A566 − 157.01A616 + 408.75A691 − 142.31A776.
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Table 6
Classification tree structure.

Node No. Left branch Right branch B C G J W Predicted class % Correct

1 2 3 9 10 10 8 10 C 21.3
2 4 5 0 0 10 8 0 G 55.5
3 6 7 9 10 0 0 10 C 52.6
4 0 0 10 0 0 G 100
5 0 0 0 8 0 J 100
6 9 0 0 0 0 B 100
7 8 9 0 10 0 0 10 C 50.0
8 0 10 0 0 0 C 100
9 0 0 0 0 10 W 100

Table 7
Cross validation of discriminant and C&RT (in brackets) models using two different data sets.

Brand Number of samples Predicted classification DA (C&RT) Accuracy (%)

B C G J W

Samples from the same batch
B 7 7 (7) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)
C 5 0(0) 4(5) 1(0) 0(0) 0(0) 80 (100)
G 5 0(0) 0(0) 5(5) 0(0) 0(0) 100 (100)
J 6 0 (0) 0 (0) 0 (0) 6 (6) 0 (0) 100 (100)
W 5 0 (0) 1(0) 0 (0) 0 (0) 4(5) 80 (100)

Total 28 7(7) 5(5) 6(5) 6(6) 4(5) 90 (100)

Samples from different batch
B 5 5 (5) 0 (0) 0 (0) 0 (0) 0 (0) 100 (100)
C 5 0(0) 4(4) 0(0) 0(0) 1(1) 80 (80)
G 5 0(0) 1(1) 3(4) 0(0) 1(0) 60 (80)
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J 5 0 (0) 1 (
W 5 0 (0) 1(2

Total 25 5 (5) 7(7

mental errors due to the fact that samples were analyzed with a
months interval. On the other hand, samples belonging to dif-

erent batch were misclassified and especially those with similar
omposition reflecting changes in the composition of the samples
e.g. harvesting conditions, storage, production processes, etc.) that
annot be accounted for by the models unless appropriate calibra-
ion sets are available that can maximize feature extraction and
ccount for the specific characteristics of the samples. Neverthe-
ess, the discrimination power of the model was not completely
eteriorated which may be ascribed to its high efficiency as well
s to the mild extraction conditions (i.e. water) reflecting changes
nly in their hydrophilic fraction.

The results of the cross validation study reflect the fact that
lassification techniques are by definition data-driven, therefore
ppropriate training sets are necessary to select variables that lead
o a meaningful feature detection.

. Conclusions

The application of UV–Vis spectrophotometry as an alterna-
ive or complementary approach to tobacco classification was
ssessed. The method was focused on the discrimination of com-
ercial tobacco products (cigarettes) with different as well as

imilar qualitative composition. From the results it was concluded
hat tobacco samples could be perfectly discriminated based on
he normalized UV–Vis spectrum of their aqueous extracts and
pplying multivariate chemometric techniques like linear discrim-
nant analysis and classification and regression trees. Based on the

esults obtained, the proposed protocol was deemed satisfactory
or supporting exclusionary hierarchy purposes for assessing the
uthenticity of a sample or as corroborative evidence in forensic
xaminations, since it can discriminate among samples with dif-
erent composition and provide evidence on the composition of
0 (0) 4 (5) 0 (0) 80 (100)
1 (0) 0 (0) 3(3) 60 (60)

4(4) 4(5) 5(4) 76 (84)

samples with similar composition. Most importantly, the method
employs a simple extraction procedure and a series of multivariate
chemometrics readily available in most commercial software thus
alleviating the need for sophisticated statistical procedures and
algorithm programming. However, since the classification proce-
dure is data-driven, representative training and validation samples
must be available that can be used to select variables that lead to a
meaningful feature extraction.
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